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ABSTRACT
An axisymmetic linear elastic finite element program

was developed to investigate the effect that the two linear
elastic parameters, Poisson’s ratio and Young’s modulus,
had on soil compaction. This program was verified against
Boussinesq’s linear elastic theory. It was found that
increased values of Young’s modulus had no effect on the
stress state in the soil mass but that strain levels were
decreased. Increased values of Poisson’s ratio increased the
stress state and decreased the strain levels. The interaction
of these two parameters point to the need to be able to vary
both over the entire stress range.

INTRODUCTION

M ethods of predicting soil compaction could enable
farmers to select times to till or traffic fields
when the soil was not in a highly compactable

state. Many prediction methods are available but one that
offers significant promise for modeling of soil compaction
is finite element analysis. Finite element methods can
accurately model complex loading geometries (tires, tracks,
etc.),  and the analysis can be performed on
microcomputers. The computing power required to run
finite element analysis previously restricted its use to large
main-frame computers. Now, farmers own microcomputers
that are powerful enough to solve difficult soil compaction
problems.

Ideally, the detailed analysis of soil compaction would
begin with an adequate constitutive relationship between
applied stresses and resulting deformations. However, a
constitutive relationship that takes into account all
intricacies of agricultural soil has not been developed.
Because of computational and theoretical limitations, the
linear elastic assumption has been used, with the finite
element method, to analyze soil compaction (with mixed
success). Some difficulty with finite element analysis is
expected because agricultural soil rarely behaves in a linear
elastic manner. Compressive stresses usually cause
agricultural soil to compact and the original volume of the
soil is unrecoverable. However, until significant gains are

made in describing soil constitutive relationships, some
form of the linear elastic assumption will continue to be
used with finite element analysis.

To make use of the linear elastic assumption, two input
parameters are specified, Poisson’s ratio and Young’s
modulus. These parameters vary depending upon soil
texture, soil moisture content. soil history, the loading used,
etc. The relationship between these parameters and soil
compaction is not completely understood. Most studies
assume that one or both of these parameters are constant
(Girijavallabhan and Reese, 1968; Perumpral, 1969;
Duncan and Chang, 1970; Naylor and Pande, 1981;
Pollock et al., 1985). Young’s modulus is usually
determined by compressive laboratory tests on similar
soils. Poisson’s ratio is usually assumed to be a value
between 0.3 and 0.45 based upon the clay content of the
soil. Assumptions that must be made in determining these
parameters warrant further investigation into the effect of
these parameters upon finite element predictions of soil
compaction. To do this, a finite element program must be
developed that will allow the linear elastic parameters to be
varied independently. The objectives of this research were
to:

*    Develop and verify a finite element program capable
of predicting soil compaction and stress distribution,

* Compare predictions from a linear-elastic finite
element model with results from a laboratory
experiment, and

* Determine the effects of Poisson’s ratio and Young’s
modulus on the finite element model’s predictions.

DEVELOPMENT AND VERIFICATION OF
FINITE ELEMENT PROGRAM

In finite element analysis of most soil mechanics
problems, plane-stress, plane-strain, or axisymmetric
descriptions have been used along with plane-strain
triangular elements (Desai and Christian, 1977). An
axisymrnetric model was chosen because this idealization
is easily physically modeled in the soil bins at the National
Soil Dynamics Laboratory (NSDL) by using a round plate
to apply loads to the soil surface. Use of an axisymmetric
model gives the ability to solve a three-dimensional
problem with the added advantages of two-dimensional
storage and computation time. This is important because a
soil compaction prediction model that can be used with a
microcomputer is desired.

A plane-strain, plane-stress finite element program
(Desai and Abel, 1972) was modified for the axisymmetric
application. Because axisymmehic geometry includes three
principal directions (radial, tangential, and vertical), rather
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than the two associated with plane-strain or plane-stress
analysis. basic changes had to be made in several of the
finite element matrices (Raper, 1987; Bathe, 1982: Desai
and Abel, 1972). The stress-strain or constitutive matrix
had to be increased in size from a 3x3 to a 4x4. The
resulting relationship is give” below:

From examining the equations that comprise finite
element analysis, it is hypothesized that one can determine
the effects of modifying Young’s modulus. Since Young’s
modulus is multiplied by the matrix in equation 2, and this
matrix is multiplied by the strain matrix in equation 3,
Young’s modulus is directly linked to the nodal
deformations which are solved for from equation 4.

Doubling the value of Young’s modulus decreases the
nodal deformations by a factor of two. This in turn
decreases the element strains by the same factor because
they are calculated from the nodal deformations. The
element strains (which have been reduced by a factor of
two) are then multiplied by Young’s modulus (which has
bee” doubled) to calculate the element stresses (as in
equation 1). Therefore, Young’s modulus does not affect
the stress levels. It only has the effect of decreasing the
deformations and strains.

Unfortunately, it is not as easy to determine the effects
of modifying Poisson’s ratio. Because of the manner that
Poisson’s ratio is incorporated into the stress-strain
relationship (see eq. 2), it is not intuitively obvious how its
adjustment will affect the element stresses and strains.
Simply doubling the value of Poisson’s ratio will influence
some directional deformations differently than others. All
nodal deformations will be changed, but by different
factors. The only method to determine the effect of
Poisson’s ratio on finite element analysis is to examine the
predicted results.

During verification of this program, the solutions failed
to converge acceptably “ear the central axis. This problem
was caused by the triangular plane strain elements that
were used in the model (Huebner and Thornton, 1982). A”
inaccurate averaging method was used to determine this
element’s volume and surface area. The isoparametric
linear quadrilateral element was then chosen because it
used numerical integration to determine its volume and
surface area. This element is easily numerically integrated
by using Gauss-Legendre methods. Two subroutines were
taken from Bathe (1982) that used the Gauss-Legendre
methods of numerical integration and allowed the user to
determine the order of integration desired. For the elements
used in this program, Bathe advised using 2-point
integration, eve” though the subroutines allowed 2-, 3-, or
4-point integration. The isoparametric linear quadrilateral
element was also chosen because future research could
include three-dimensional models and including this
element would make the program mom general and easier
to expand.

A grid, using these elements, was designed to allow a”
axisymmetric pressure load to be applied near the center
(fig. 1). This mesh was designed so that the total radial
distance was 6 times greater than the radius of the pressure
load. The factor of 6 was thought to be sufficient to
introduce a semi-infinite soil medium that allowed large
stresses and strains near the central axis without being
affected by fixed boundary conditions. The mesh was
composed of 169 elements and 196 nodes and extended
radially from the centerline 1.44 m and vertically into the
soil 1.44 m.

The finite element program with isoparametric
quadrilateral elements was first tested in a gravity loading
situation. This test was conducted to verify that all
elements were properly linked and no discontinuities
developed over the zone of interest. (The plane-strain
triangular elements failed this test.) As can be seen in
figure 2, the behavior of the isoparametric quadrilateral
elements was linear. The vertical stresses were constant
across the entire mesh. This behavior proved that all
elements were responding as anticipated to a uniform
gravitational load.
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The program was further verified by using a flexible
circular footing problem. This footing problem is a
common verification technique used in civil engineering
applications (Girijavallabhan and Reese, 1968). The
parameters necessary were the finite element mesh (fig. l),
loading type and amount, and soil properties.

The loading was distributed evenly over the centermost
four elements at the top of the mesh. The amount (125 kPa)
and radius (0.24 m) of the pressure load corresponded to a
similar problem solved by Pollock et al. (1985). The linear
elastic parameters (E = 4788 kPa and v = 0.3)
corresponded to the values used by Girijavallabhan and
Reese (1968). They evaluated their program accuracy by
plotting the surface settlement against the theoretical linear
elastic equations developed by Boussinesq (Poulos and
Davis, 1974). This same technique was used to evaluate
performance of our program .

The flexible, circular loading problem was used to
compare Boussinesq theory with our finite element
program. Results from the two methods were in good
agreement. The surface deformation predicted by the finite
element method was close to, but slightly less than that
predicted by Boussinesq theory (fig. 3). When the surface

deformations were plotted against each other and fitted
with a linear equation, there was statistical justification to
accept the null hypothesis that the slope of the line was
unity. A slope of other than unity would indicate that the
finite element method would not predict the Boussinesq-
predicted surface deformation. The vertical stress contours
predicted by the finite element method (fig. 4) were
slightly greater (12.4%) than those predicted by
Boussinesq’s theory but seemed reasonable and appeared
to be of similar shape. Differences predicted by the two
methods probably were because an infinite soil medium
was assumed by Boussinesq’s theory and a boundary
existed on the finite element model. Our finite element
model was therefore assumed to be working correctly.

METHODS AND MATERIALS
Estimations of linear-elastic parameters came from data

obtained at the NSDL during development of the
compaction model (Bailey et al., 1984). Analysis of data
obtained from the.Norfolk sandy loam soil indicated that
the stress-strain relationship behaved as shown in figure 5.



Three values of Young’s modulus were determined from
different regions of the curve. A minimum value of 506
kPa and a maximum value of 5236 kPa were calculated
over the initial and final ranges of data, respectively. A
median value of 2524 kPa was calculated by fitting a
straight line over the entire range of data

This relationship was derived from the classic Poisson’s
ratio definition, which is the ratio of radial strain to axial
strain. This equation, which uses axial strain and
volumetric strain, allowed the data obtained by Bailey et al.
(1984) from the Norfolk sandy loam soil to be used to
calculate values of Poisson’s ratio (fig. 6). This figure
shows how Poisson’s value varied from 0.13 to 0.38.
Values that have been used for Poisson’s ratio by other
researchers were in the range of 0.30 to 0.45; however, our
results suggested that smaller values should be considered.
Therefore, three values were selected for Poisson’s ratio;
0.13,0.25 and 0.38.

The finite element program was run with nine
combinations of three levels of Young’s modulus and three
levels of Poisson’s ratio. Variables predicted were mean
normal stress, vertical stress, volumetric strain, and surface
deformation.

A laboratory experiment was carried out in the soil bins
at the NSDL to verify predicted results. A round steel plate

with a 25 -kN load was used in the Norfok sandy loam soil
bin. This load was thought to be the approximate maximum
hat a tractor applied to the soil surface. Stress state
transducers (Nichols et al., 1987) were used to measure
stress levels in the soil beneath the steel plate at two initial
depths: 15 cm and 25 cm. Although these transducers
measured stresses in six directions, only the vertical stress
measurements were used to compare against the finite
element model.

RESULTS AND DISCUSSION
Values of stress obtained with the finite element method

were significantly below those obtained in the soil bins.
The shallow transducer (placed 15 cm below the surface)
measured vertical stresses in the soil bins of 266.6 + 172.9
kPa (for a 95% confidence interval) as compared to 59 - 61
kPa predicted by the finite element method for the different
configurations of the two linear elastic parameters. The
deep transducer (placed 25 cm below the surface)
measured vertical stresses of 231.4 + 17.1 kPa as compared
to 58 - 63 kPa predicted by the finite element method. The
surface of the soil in the soil bins was displaced 19.6 cm by
the flat plate when the 25 kN load was exerted. The finite
element predictions were much less than this, ranging from
0.4 to 5.8 cm.

Errors in predictions of vertical stress and surface
deformation stem from inaccurate modeling due to the
linear elastic assumption. Even when low numerical values
of Young’s modulus and Poisson’s ratio were used, the high
stresses and deformations found in the soil bin experiment
could not be predicted. Even though values of stress, strain,
and deformation were not predicted accurately by using the
linear elastic assumption, certain important trends
developed that could aid the understanding of the effect of
each of these parameters on results predicted by finite
element analysis.

When Poisson’s ratio was increased from 0.13 up to
0.38 with a constant Young’s modulus, the vertical stress
level in the area beneath the flat plate increased
substantially (figs. 7 and 8). and the strain levels decreased.
When Young’s modulus was increased from 506 kPa up to
5236 kPa with a constant Poisson’s ratio, the stress levels



did not change (figs. 8 and 9). but the strain levels
decreased.

To help clarify these trends, vertical stress and
volumetric strain were evaluated at depths of 28 cm and 43
cm beneath the center of the plate. The results arc shown in
Tables 1 and 2.

At the 28 cm depth, when Poisson’s ratio was increased
from 0.13 to 0.38, the vertical stress increased 8.2%, 9.3%.
and 9.4%, and the volumetric strain decreased 50.9%.
49.6%. and 49.6%, respectively, for Young’s moduli of
506, 2524, and 5236 kPa At the 43 cm depth, the trend
was even more significant. Vertical stress increased by
11.0%. 11.1%. and 11.2% and the volumetric strain
decreased by 44.6%, 44.3%, and 44.3%. These differences
were obtained by varying a linear elastic parameter
Poisson’s ratio) that oftentimes is taken to be constant.

Two other sets of predicted results were compared. It
was found that when Poisson’s ratio was held constant and
Young’s modulus was increased, vertical stress was not
affected but volumetric strain was. At the 28 cm depth, as
Young’s modulus was increased from 506 kPa to 5236 kPa,
the vertical stress changed -2.9%, 2.6%, and -1.6%. and
volumetric strain decreased 90.8%. 90.7%. and 90.5%.
respectively, for Poisson’s ratios of 0.13, 0.25, and 0.38. At
the 43-cm depth, the results were similar. Vertical stress
also changed by -1.0%, 1.0%. and -0.8% and volumetric
strain decreased by 90.4%. 90.3%. and 90.3%.

These trends were significant and surprising. The
vertical stress in the soil is independent of changes in
Young’s modulus but increased as Poisson’s ratio
increased. Strain levels, however, depended on both
Poisson’s ratio and Young’s modulus and decreased when
either of these parameters increased. Volumetric strain was
almost twice as sensitive to changes in Young’s modulus as
to changes in Poisson’s ratio.

This research points out problems with nonlinear
analysis in which Poisson’s ratio is assumed to be constant
and Young’s modulus is varied. Arbitrarv choices of a
constant Poisson’s ratio determine the stress state in the
soil, and even though Young’s modulus is varied. the stress.
state remains unchanged. These linear elastic parameters
interact and determine the strain levels in the soil. To
accurately depict soil compaction, both Young’s modulus
and Poisson’s ratio should be variable over the entire soil
volume being modeled.

CONCLUSIONS
1. An axisymmetric finite element program for

microcomputers was developed that proved capable
of analyzing soil compaction when a compressive
load was applied. This finite element program was
verified by comparisons with Boussinesq linear
elastic theory.




